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A study is made of the evaporation of moderately coarse drops of binary solutions 
in a multicomponent mixture of gases. The results are compared with experimental 
data. 

The rate of condensational growth or evaporation of moderately coarse aerosol particles 
depends to a significant extent on the evaporation coefficient a m. The literature contains 
conflicting information on the value of this coefficient for water. Some studies [i, 2] give 
very low (of the order of 0.01) values for ~m, while others [3, 4] give values of the order 
of i. A detailed analysis was made in [5] of many of the methods used to determine the evap- 
oration coefficient. 

In order to determine this coefficient, it is necessary to solve the problem of the evap- 
oration of a moderately coarse aerosol particle. This problem has thus far been solved only 
through the use of methods which indirectly account for the effect of the Knudsen layer on 
the rate of evaporation [6-8]. It is interesting to attempt to solve this problem using exact 
boundary conditions obtained by the methods of the kinetic theory Of gases from the solution 
of the system of Boltzmann equations [9]. 

We will examine a spherical drop of a concentrated solution of radius R. The drop is 
suspended in a ternary gas mixture. The first two components of the mixture have the same 
composition as the substances comprising the drop. We will use ~ to designate the mean 
free path of the gas molecules. The ratio ~/R is referred to as the Knudsen number Kn. 
Drops for which 0.01 < Kn <_ 0.3 are considered to be moderately coarse. 

We will assume that both components of the liquid forming the drop undergo a phase trans- 
formation on the surface. We will further assume that constant concentrations of vapors of 
the volatile components ci~. c2~ and a constant mixture temperature T~ are maintained a large 
distance from the drop. Under the given conditions, the drop evaporation process can general- 
ly be considered quasisteady [I0]. 

If the gradients of the temperature of the gas mixture and the concentrations of the 
components are small at distances of the order of the drop size, then the process of quasi- 
steady evaporation can be described by the following system of linear differential equations: 

~l(o.~V2VC~) = Vp(~}, 

d iv  v (~) = O, 

V2C(l e) ----- O, 

V2C~e} O, 2 ----- 

v e T  (e) =- O, 

~l.~V~V(tl = Vp(~), ( 1 )  

div  v(O = O, 

V~CC[~ = O, 

v2T{O = O. 
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The superscripts e and i denote that the given physical quantity belongs to the regions out- 
side and inside the drop, respectively; In Eq. (i), ,vi0: and ~v(e)) are the mean-mass velocities 
of the liquid and gas mixtures; T(i) and T(e) are temperatures; D(i) and N(e) are the viscos- 
ities of thelliquid and gas, respectively; p(e) and p(i) are the pressures outside and in- 
side the drop. The relative concentration of the k-th component of the gas is determined by 

the relation c ~ = n ~ / n ( @ ,  where: n~ ~ i'n~)-~-n~)-~-n~). Inside the drop, c ~ ) = n ~ ) m k / p  (i} �9 

Here, ] n~ ), n~ ) ~are the concentrations of molecules of the k-th component inside and outside 

the drop, irespectively; mk is the mass of a molecule of the k-th component, p(0 = n~)mxq_n~)m~" 

In accordance with thei assumptions we have made, the following conditions will hold at 
large distances from the drop: 

(2) 

T~%-, |  = T = ,  pCe) l~- ,=  = P,*. 

With allowance for conditions (2), the solution of system (I) appears as follows in 
cylindrical coordinates [ii]: 

v~:) = A , c~e)= B1 , c~e)= B---t~, r ( ' ) =  C , (3) 
r ~ r r r 

pC~> = p . ,  v~ ~ = v,o,~ c'[ ~ = ~o,O~ T<~ = T ~ .  

To determine the constants in (3), it is necessary to assign boundary conditions on the sur- 
face of the drop. At r = R we will have the following: 

. The mass conservation laws for the first and second components of the liquid 

f=l (a) 

lh 
4nR~mh 

, k - - l ,  2. 

2. The condition of nonflow of molecules of the third component 

= ( e t ' i  : '  : .r , . , /  .(,, o(re) n (e)' ~ D3irni _ --a 
- a  O~,) \--AT-) ~ ~ )  = O. 

1=1 

(5) 

. The condition of continuity of the heat flow 

__ ~(e, : dT(e' I (dT(i)  I ? _  _(e,, {e, 
dr ] q" • = - -  (L,m,n~ ") q- ,-.=,,,=.~ ) v~ § 

dr ] 

+ - = - y  .,, + L : ,o , , )  + ( L H '  + 
dr]  

L D (Th ( d T ~  I 

(6)  
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where • and • are the thermal conductivity of the drop and gas, respectively; L k is 
the heat of vaporization of the k-th component; I k is the rate of change in the mass of the 
k-th component in the drop. 

4. The condition of continuity of the normal component of the tensor of the viscous 
stresses 

-p ,"  + 2n,. ( do: / a - p<,, 2.,,, ( ~;'' ] 
\ ~ ] - - 2 ~ =  + ~,--dT- I ' 

(7) 

where o is the surface tension of the substance of the drop. 

It is also necessary to assign boundary conditions for the concentration of the volatile 
components and the temperature of the gas with allowance for discontinuities. 

5. The boundary condition for the temperature of the gas mixture 

> - r . ,  #'(  drdr'~' ) ~ .,,~, ( <~' = T \ - - . / + T ~  ,,r ] 
\ dr 

where K~ ), K~ n) are the temperature discontinuity coefficients. 
centration discontinuity coefficients were calculated in [9]. 

6. 

Temperature and con- 

The boundary condition for the concentration of the k-th volatile component 

�9 O~D~ c~ e) = Oh (T=, R, c] i)) + ~ (Tr -- T=) + 

+ To ( dT'~'le. / + ,:~'s'~ K'~ ',( e# 

(8) 

(9) 

where Oh(T~, R, c? )) is the concentration of the saturated vapors of the k-th component 
and K(~2, ~) are the concentration discontinuity coefficients. 

With allowance for conditions (4)-(9),theexpression for the rate of change of the mass 
of the k-th component can be written in the form: 

dt ]=1 (lO) 

-- Oi ( D(hr)mk n:~ I~ D~r)mz /I]](q)J(T~' R, cr 

where 

n(e) ~ 
Oj -- mj 

to( e ) 
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a7 ) - -  a <1)2 a~ l) - aT) 
B l =  a~ l) a2(2)-a(22 )aT  ) , B ~ =  a~l) a7 )_a(?>a(21 ) ; 

~.~n). Oej K]T (n) I "xln[(('T) 
_(s) 1 + -g T~ - -  0s 
us = ~ aT R [ RT 

hn K (2 ) OOh 1< 
- -  R + aT  ~ -  T = - -  0s R T ~  

aT 1 +  ~ ; 

0---r t T ) J  

( i i )  

We find the temperature of the surface of the liquid drop from the following equation: 

T <~)-To= Bs --0~ 1 +  R ) R " 

As a special case, we can use Eq. (9) to obtain an expression for the rate of evaporation 
of a drop of binary solutions in which one of the components is nonvolatile. To do this, we 
set c~e)=0, ~2=0, D~)=0, D2I=0 in Eqs. (9)-(10). In this case, outside the drop we will 
have a binary mixture of the carrier gas and vap0rs of the solvent. Thus, the generalized 
diffusion coefficients Dij can be replaced by the ;usual interdiffusion coefficients Dij: 

Dn = nh Dla, Dal ---- - -  Dal, D18 ----- D33 ---- 0. 
ml 

Ignoring thermodiffusion phenomena, we obtain the following expression for the rate of 
change of the mass of the drop: 

d~ __ Dlamltl(--e) B, (12)  
dt p([) c(2 ~' 

where 

R, - -  

-- T . - - K ~  ) . . . .  0c1| K ~  ) ' 
1 + 0 ~ \ 1 +  ~ ) + c x .  R OT R V. R 

0 = LD18 rain(e) 

'-'3 

Equation (12) differs from the formulas obtained in [3, 4, 6-8] in the presence of the 
cross terms in the temperature and concentration jumps. We can use Eq. (12) to obtain an 
expression which describes the evaporation of drops of pure liquids. In the limiting case 
of coarse drops (Kn < 0.01), Eq. (12) becomes the well-known expressions in [12] for the rate 
of drop evaporation. 

Unfortunately, there is currently no experimental data on the evaporation of moderately 
coarse drops of binary solutions of volatile liquids. We will therefore use data on the~ evap- 
oration of dropslof salt solutions [3] and compare it with the rate of evaporation calcu- 
lated from Eq. (12). 

The authors of [3] conducted three series of experiments. In the first series, drops 
were grown on condensation nuclei with a corrected radius R 0 = 0.18 ~m. In the second series, 
R 0 = 0.26 Bm, while R 0 = 0.40.! m in the third series. Figure 1 shows results of the calculations 

344 



t7 

~6 

7,# 

~3 

a / /f �9 2~ 2j 
2.f 

7,1 

7,0 

7,9 

R 
5,z 

3,D 

7,6 

7,2 

b . y  

c / 

�9 �9 �9 2 

Fig. I. Dependence of the corrected radius on time for dif- 
ferent initial values of drop size: a) R 0 = 0.18 pm; b) 0.26; 
c) 0.40; i) am = i; 2) 0.i; 3 - 0.03. R, pm; t, C. 

(solid curves) and experimental data. The rate of drop evaporation Was calculated for three 
values of the evaporation coefficient: ~m = i, 0.i, and 0.03. It should be noted that the 
following expressions (with our notation) were used in [3] to calculate drop growth rate: 

R d R  _ b13mln<~) ~1 (T~, R, c~ )) - -  c1~ , 

dt p,~O 1 - [ - 0 J r  4D13 + 0  • 
VR~m mR~r 

where V is the mean velocity of the gas molecules; m is a coefficient which characterizes the 
thermal contact of the drop with air (it is connected with the temperature jump). The quant- 
ity 4~13/VR=m , characterizing the effect of the Knudsen layer evaporation rate, differs 
roughly 70% from the value calculated by the Loyalki method [9] for ~m = i. The total con- 
tribution of crossover effects connected with the discontinuity coefficients K~ ) and ~(T~ II\ n 

is 15% of the contribution of the coefficient K (n) --n 

Comparison of the theoretical results obtained using rigorous kinetic theory and the 
empirical data supports the conclusion in [3] that the evaporation coefficient of water lies 
within the interval 0.I-i. It is not possible to determine ~m more precisely due to the 
large scatter of the experimental data. 
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DOUBLEEXPLOSION ABOVE A HEATED SURFACE 

V. A. Andrushchenko and 
M. V. Meshcheryakov 

UDC 533.6.011.72 

The Navier--Stokes equations are used to numerically solve a problem on the inter- 
action of a pair of spherical waves with one another and an underlying rigid sur- 
face covered by a layer of heated gas. A study is made of complex processes 
involving the irregular collision of primary and secondary shock waves, their 
interaction with thermal discontinuities, the accompanying formation of precur- 
sors, suspended shocks, vortices, etc. 

The interaction of shock waves (SW) has recently been a subject of intensive study 
in astrophysics, the theory of explosion, plasma physics, etc. The authors of [i, 2] exam- 
ined the collision of normal and oblique shocks, while a unidimensional problem on the 
direct collision of two plane shock waves was solved numerically [3]. The study [4] focused 
on the interaction of spherical SW's in a double explosion in which point explosions occur- 
red at the same point in space but at slightly different times. There has been little at- 
tention given to the more complicated effects which arise in the frontal collision of sphe- 
rical SW's, most of the studies having been experimental investigations conducted in labo- 
ratory [5] and full-scale [6] experiments. Such collisions have also been examined in connec- 
tion with experiments studying the interaction of laser sparks [7, 8]. Similar numerical 
problems were studied in [5, 7, 8] and were solved in two-dimensional formulations in [9]. 

In the present study, we examine the more complex problem of a double explosion above 
a hard surface in the presence of a thermal layer (TL) on the surface. Here, along with the 
frontal collision of spherical SW's, there is an interaction between the SW's and the sur- 
face, another interaction between the SW's and the TL, and interactions with reflected and 
secondary SW's./ 

i. We solved the problem of the interaction of two laser-induced explosions (the param- 
eters of whichi are close to the parameters examined in [7, 8]). The explosions occur simul- 
taneously on a single vertical line above a solid surface covered by a layer of heated gas 
formed either as a result of radiation from the explosions or as a result of independent 
heating (see [i0, ii]). 

As the mathematical model of the given physical process, we choose the system of Navier-- 
Stokes equations for a compressible heat-conducting gas in cylindrical coordinates (r, z) 
for the axisymmetric case. In dimensionless variables, this system has the form: 

, 
dr" p - - V P + ~  V($V'V) J r - ~ - v ( ~ d i v v )  , 

d T  

d~- -- (3' --  1) T div v +  9RePr V (kvT), 

dp d 0 ~. 
dt -- -- ?p div v + ?----~----. V(kVT), 9T, - -  + (v. V). 

Re Pr P = dt Ot 

(i) 
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